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1 Introduction

The fiber product

A = R ×T S = {(a, b) ∈ R × S | f (a) = g(b)}

is the subring of R × S , where

R
f−→ T and T

g←− S

are homomorphisms of rings. Hence we have the exact sequence

0 −→ A
ι−→ R × S

[
f
−g

]
−→ T

of A-modules.
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Question 1.1

When is R ×T S an AGL ring?
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Preceding results

Ogoma ([7])
the Gorensteinness of fiber product A = R ×T S , where R is a
CM local ring, S is a equi-dimensional Noetherian local ring with
(S1)

D’Anna, Shapiro, Ananthnarayan-Avramov-Moore ([3, 8, 1])
the Gorensteinness of fiber product A = R ×R/I R , where R is a
Noetherian local ring

Nasseh-Sather-Wagstaff-Takahashi-VandeBogert ([4])
the CM fiber products of finite CM type
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Example 1.2

Let R = k[[X ,Y ]]/(X a − Y b), S = k[[Z ,W ]]/(Z c −W d) with
a, b, c , d ≥ 2.
Then

A = R ×k S ∼= k[[X ,Y ,Z ,W ]]/
[
(X ,Y )·(Z ,W ) + (X a − Y b,Z c −W d)

]
is a CM local ring with r(A) = 3.

How about the AGL property?
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2 Basic facts

For homomorphisms f : R → T , g : S → T , we consider

A = R ×T S = {(a, b) ∈ R × S | f (a) = g(b)} ⊆ B = R × S .

Then
R

f

��
A

p2 ��

p1
??

T

S

g

??

where p1 : A→ R , (x , y) 7→ x , p2 : A→ S , (x , y) 7→ y .
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Lemma 2.1

Suppose f and g are surjective.

(1) A is a Noetherian ring ⇐⇒ R , S are Noetherian rings

(2) (A, J) is a local ring ⇐⇒ (R ,m), (S , n) are local rings

When this is the case, J = (m× n) ∩ A.

(3) (R ,m), (S , n) are CM, dimR = dim S = d > 0, depthT ≥ d − 1

=⇒ (A, J) is CM and dimA = d.

Proof.

Consider
0 −→ A

ι−→ B = R × S
φ−→ T −→ 0

where φ =
[

f
−g

]
.
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Let (R ,m), (S , n) be Noetherian local rings, k = R/m = S/n, and
f : R → k , g : S → k the canonical maps.

Proposition 2.2

(1) v(A) = v(R) + v(S).

(2) dimR = dim S > 0 =⇒ e(A) = e(R) + e(S).

(3) If R, S are CM and dimR = dim S = 1,

A = R ×k S is Gorenstein ⇐⇒ R and S are DVRs.
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Proof.
Jℓ+1 = mℓ+1 × nℓ+1 (∀ℓ ≥ 0), since J = m× n.

(1) ℓA(J/J
2) = ℓk([m/m2]⊕ [n/n2]) = ℓR(m/m2) + ℓS(n/n

2).

(2) ℓA(A/J
ℓ+1) = ℓA(A/J) + ℓA(J/J

ℓ+1)

= 1 +
[
ℓR(m/mℓ+1) + ℓS(n/n

ℓ+1)
]

= 1 +
{
[ℓR(R/m

ℓ+1)− 1] + [ℓS(S/n
ℓ+1)− 1]

}
=

[
ℓR(R/m

ℓ+1) + ℓS(S/n
ℓ+1)

]
− 1

(3) (⇒) By 0→ A
ι→ B

φ→ k → 0,

0→ A : B
ι→ A→ Ext1A(A/J ,A)→ 0.

Hence, J = A : B . Thus, because A is Gorenstein and A : J = J : J ,

R × S = B = A : (A : B) = A : J = J : J = (m : m)× (n : n).

Therefore, R = m : m and S = n : n, whence R , S are DVRs.
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3. AGL rings
Suppose (R ,m) a CM local ring, d = dimR , ♯(R/m) =∞, ∃KR .

Definition 3.1 (Goto-Takahashi-T)

We say that R is an almost Gorenstein local ring, if ∃ an exact
sequence

0→ R → KR → C → 0

of R-modules such that µR(C ) = e0m(C ).

We have

R is a Gorenstein ring ⇒ R is an AGL ring.

µR(C ) = e0m(C )⇔ mC = (f1, f2, . . . , fd−1)C , for some
f1, f2, . . . , fd−1 ∈ m
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Suppose dimR = 1 and R ⊆ ∃K ⊆ R s.t. K ∼= KR . Then

Remark 3.2 (Goto-Matsuoka-Phuong, Goto-Takahashi-T, Kobayashi)

R is an AGL ring ⇔ mK ⊆ R ⇔ mK = m ⇔ mK ∼= m.

Example 3.3

(1) k[[te , te+1, . . . , t2e−3, t2e−1]] (e ≥ 4)

(2) k[[X ,Y ,Z ]]/(X ,Y ) ∩ (Y ,Z ) ∩ (Z ,X )

(3) k[[t4, t5, t6]]⋉ (t4, t5, t6)

(4) 1-dimensional CM rings of finite CM-representation type

(5) 2-dimensional rational singularity

(6) k[[X1,X2, . . . ,Xn,Y1,Y2, , . . . ,Yn]]/I2(
X1 X2 ··· Xn
Y1 Y2 ··· Yn

) (n ≥ 2)
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4 Results in dimension one

Setting 4.1

(R ,m), (S , n) CM local rings, dimR = dim S = 1

k = R/m = S/n, f : R → k , g : S → k canonical maps

A = R ×k S ⊆ B = R × S , J = m× n (the maximal ideal of A)

Then

Q(A) = Q(B) = Q(R)× Q(S)

A = B = R × S

We assume that Q(A) = Q(R)× Q(S) is a Gorenstein ring, ∃KA,
and ♯k =∞. Hence, all the rings A,R , and S possess fractional
canonical ideals.
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Theorem 4.2

TFAE.

(1) A = R ×k S is an AGL ring.

(2) A = R ×k S is a GGL ring.

(3) R and S are AGL rings.
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Preliminaries for the proof of Theorem 4.2
We have R ⊆ K ⊆ R , K ∼= KR , and S ⊆ L ⊆ S , L ∼= KS .

Firstly, suppose R and S are not DVRs. Then K : m ⊆ R , L : n ⊆ S .

Hence, because R : m ̸⊆ K and S : n ̸⊆ L, we have

K : m = K + R ·g1, L : n = L+ S ·g2
for some g1 ∈ (R : m) \ K and g2 ∈ (S : n) \ L. We set

X = (K × L) + A·g

with g = (g1, g2) ∈ A. Then we have

Lemma 4.3

A ⊆ X ⊆ A and X ∼= KA.
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Theorem 4.4

Suppose R and S are not DVRs. TFAE.

(1) A = R ×k S is an AGL ring.

(2) R and S are AGL rings.

Proof.

Note A is AGL ⇔ JX = J (= m× n), while

JX = (m× n) · [(K × L) + A·g ]
= (mK +m·g1)× (nL+ n·g2)
= m(K + R ·g1)× n(L+ S ·g2)
= m·(K : m)× n·(L : n) = mK × nL.

Therefore

A is AGL ⇔ mK = m, nL = n ⇔ R , S are AGL.
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Proof of (1) ⇔ (3) in Theorem 4.2
Assume R is a DVR but S is not. Choose X so that A ⊆ X ⊆ A
and X ∼= KA. Then KB = X : B ∼= R × L. Therefore

X : B = ξ · (R × L)

for some ξ = (ξ1, ξ2) ∈ Q(A).

On the other hand, by 0→ A
ι→ B

φ→ k = A/J → 0, we get

0 −→ X : B −→ X −→ A/J −→ 0.

Hence JX ⊆ X : B ⊆ X . Thus

Lemma 4.5

X : B ⊆ X ⊆ (X : B) : J = (ξ1R × ξ2L) : J

= ξ1·(R : m)× ξ2·(L : n).
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Proof of (1) ⇔ (3) in Theorem 4.2

Corollary 4.6

J(X : B) ⊆ JX ⊆ J · [ξ1(R : m)× ξ2(L : n)].

(1) ⇒ (3) We have JX = J . Hence

n·ξ2L ⊆ n ⊆ n·ξ2(L : n) = ξ2·nL

because n(L : n) = nL. Thus n = ξ2·nL ∼= nL, so that S is AGL.

(3)⇒ (1) We have JX = [JX ∩ A · (1, 0) · ξ] + Jξ, and

JX ∩ A · (1, 0) · ξ ⊆ Jξ ⇒ JX = Jξ ∼= J

JX ∩A · (1, 0) · ξ ̸⊆ Jξ ⇒ JX = ξ(R×n) ∼= ξ(m×n) = ξJ ∼= J

This will prove that A is AGL.
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Theorem 4.2

R ×k S is an AGL ring ⇔ R and S are AGL rings.

Letting S = R , we have

Corollary 4.7

R ×R/m R is AGL ⇔ R is AGL ⇔ R ⋉m is AGL.
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Comment to the case of 2-AGL rings

Let c = R : R[K ].

R is a Gorenstein ring ⇔ c = R

R is a non-Gorenstein AGL ring ⇔ c = m

We also have

Theorem 4.8

R ×R/c R is 2-AGL ⇔ R is 2-AGL ⇔ R ⋉ c is 2-AGL
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Theorem 4.9

R ×k S is 2-AGL ⇔ R is AGL, S is 2-AGL, or

R is 2-AGL, S is AGL

Example 4.10

(1) k[[t3, t7, t8]]×k k[[t]]

(2) k[[t3, t7, t8]]×k k[[t
3, t4, t5]]
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5. Higher dimensional cases

(R ,m), (S , n) CM local ring with d = dimR = dim S > 0

(T ,mT ) a RLR with dimT = d − 1, ♯(T/mT ) =∞.

f : R → T , g : S → T surjective

A = R ×T S , J = (m× n) ∩ A.

Then A is a CM local ring with dimA = d .

Proposition 5.1

A = R ×T S is Gorenstein ⇔ R and S are RLRs.
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Theorem 5.2

Assume that ∃KA and that Q(A) is a Gorenstein ring. Then TFAE.

(1) A = R ×T S is an AGL ring.

(2) R and S are AGL rings.
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Thank you for your attention.
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